

FLEXIBLE SEAMLESS WAVEGUIDE

MATERIAL:

Waveguide:

- Brass 70/30 CuZn30
 Standards: ISS IS407, ASTM C26000 (USA)
- Brass 80/20 CuZn20
- Standard: ASTM C27000 (USA)
- Beryllium Copper CuBe Alloy Standard: UNS C17200 Alloy 25, ASTM B643 AMS 4535 QQ-C 530
- Phosphorous Bronze CuZn8 Standard: ASTM C52100 Grade 104 (USA)

Flanges: Brass 58

MICROWAVEFILTERS offers a wide variety of flanges including European "154 IEC" standard, American MIL specification "UG" flanges and American EIA "CPR" types. Special flanges can be supplied upon request.

MANUFACTURING PROCESS:

Seamless waveguides are manufactured by convoluting and forming a metal tube so it will flex in the E and H planes only. The seamless construction generally allows for greater power and pressure handing although length is limited to 1 meter.

The above-mentioned components are assembled together through the operations of soldering/brazing (according to specifications Castolin 157).

OPERATING TEMPERATURE RANGES:

-55 °C to +145 °C.

SURFACE TREATMENTS:

Internal protection:

Waveguide: silverplating

Flanges: brightening passivation according to European Directives 2002/95/EC ("RoHS") and 2003/11/EC.

External protection: Waveguide: silicone rubber covering according to MIL-S23586 *Flanges*: catalytic epoxy painting (colour RAL 9005)

SUPPLIED MATERIAL:

The product (waveguide + flanges) will be supplied together with:

- flange mounting kit, composed of: AISI 303 stainless steel screws (all thread) + elastic washers + hexagonal nuts and gasket (if necessary);
- label on the waveguide with: our logo + our product code + frequency of use.

The product and the mounting kit will be delivered in a single anti-collision box together with our certificate of compliance.

PRODUCTION CONTROL:

MICROWAVEFILTERS' quality control guarantees that components are compliant with the electrical and mechanical characteristics reported below. This is possible thanks to strict tests carried out in all the manufacturing steps up to the final acceptance control, which is performed on each product using our Vector Network Analyzers.

All products are supplied with the technical documentation enclosed about the electrical and mechanical tests performed.

LENGTH

Standard lengths: 300 - 600 - 900 mm.

Other lengths are available upon request up to a maximum of 1000 mm (±50 mm). Advantage: minor reject of production, and by consequence saving costs; possibility of producing single straight component with maximum dimensions.

OTHER CHARACTERISTICS

- Strait and repetitive tolerance on extern dimensions ±0,3 mm. Advantage: according to the part of supply, for welding the waveguide, the dimensions of the flange don't have to be corrected continuosly.
- 2. No twistable on the diagonal axis of the guide, in all his lengths. Advantage: easy alignment is corrected by the flange during the welding.
- 3. No strain or deformity of the material during the formation of folding. Advantage: good mechanical resistance on the repeated vibrations.
- 4. High flexibility

Advantage: Possibility of bending the guide on two planes E and H, also on reduced radius (permanent deformation), without changing the VSWR value and the insertion loss IL. The internal dimensions and internal radius of curving is meticulous studied so that the value of the V.S.W.R. is the lowest possible in all theFrequency of production.

Electrical Characteristics

	r							
IEC	EIA	Frequency Range	Return Loss (dB)			IL	CW Power	Peak Power
R	WR	(GHz)	300 mm	600 mm	1000 mm	dB/m	Watt	kW
32	284	2.6 - 3.95	30.7	29.4	28.3	0.12	4000	2000
40	229	3.22 - 4.90	30.7	29.4	28.3	0.14	4000	1550
48	187	3.94 – 5.99	29.4	27.3	26.4	0.17	3000	1250
58	159	4.64 - 7.05	29.4	27.3	26.4	0.22	2500	1100
70	137	5.38 - 8.18	29.4	27.3	26.4	0.30	2000	500
84	112	6.58 – 10.0	28.3	26.4	25.7	0.36	1500	315
100	90	8.20 – 12.5	28.3	26.4	25.7	0.42	1000	180
120	75	9.84 – 15.0	27.3	25.7	24.9	0.55	750	140
140	62	11.9 – 18.0	27.3	25.7	24.3	0.90	400	100
180	51	14.5 – 22.0	24.9	23.7	23.1	1.45	200	70
220	42	17.6 – 26.7	23.0	22.1	20.1	2.00	100	39
260	34	21.7 – 33.0	21.7	20.8	19.4	2.40	100	30
320	28	26.4 - 40.1	21.0	19.7	18.8	2.70	75	20
400	22	33.0 - 50.1	18.0	16.5	16.0	2.80	25	12

Mechanical Characteristics

IEC	FIA	Minimum Center Line Bending Radii				
R	WR	Static E-Plane (mm)	Static H-Plane (mm)	Pressure (mbar)		
32	284	177	241	≥ 400		
40	229	165	203	≥ 400		
48	187	111	165	≥ 400		
58	159	101	152	≥ 400		
70	137	60	85	≥ 400		
84	112	57	82	≥ 400		
100	90	44	63	≥ 400		
120	75	28	57	≥ 400		
140	62	25	47	≥ 400		
180	51	22	31	≥ 400		
220	42	22	31	≥ 400		
260	34	19	28	≥ 400		
320	28	19	28	≥ 400		
400	22	19	28	≥ 400		

CONNECTION FLANGES FOR THE SEAMLESS WAVEGUIDE

IEC	EIA	RSC	Sigla d'impiego	Description of use	
R 40	WR 229	WG 11A	UERF-UDRF PDRF	UERF = rectangular section for flexible	
R 48	WR 187	WG 12	UERF-UDRF PDRF	waveguide (for indoor) UDRF = rectangular section for flexible	
R 70	WR 137	WG 14	UERF-UDRF PDRF	waveguide (for outdoor) PDRF = rectangular	
R 84	WR 112	WG 15	UDRF-PDRF UBRF-PBRF	section for flexible waveguide (for outdoor with gasket)	
R 100	WR 90	WG 16	UDRF-PDRF UBRF-PBRF (for flexib)	UBRF = square section for flexible waveguide (for indoor and outdoor)	
R 120	WR 75	WG 17	UDRF-PDRF UBRF-PBRF	PBRF = square section for flexible waveguide (for indoor and outdoor	
R 140	WR 62	WG 18	UDRF-PDRF UBRF-PBRF	with gasket)	
R 180	WR 51	WG 19	UDRF-PDRF UBRF-PBRF	CLASSIFICATION:	
R 220	WR 42	WG 20	UBRF-PBRF	BF = UARF CF = PARF DF = UDRF	
R 320	WR 28	WG 22	UBRF-PBRF	EF = PDRF FF = UBRF GF = PBRF	

HOW TO CREATE THE CODE FOR THE FLEXIBLE AND SEAMLESS WAVEGUIDE COMPONENTS

Example:

The MWFG-120/X-FF.EF code is for a flexible seamless straight R120 waveguide adapter, rubber-coated, with flanges UBRF - PDRF and length X.

Document Revision: 03 dated 11/01/13